skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Wenjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Enzymes have evolved to catalyse challenging chemical transformations with high efficiency and selectivity. Although a number of artificial systems have been developed to recapitulate the catalytic activity of natural enzymes, they are mostly limited to catalysing relatively simple reactions owing to their ability to mimic only the active metal centres of natural enzymes, without incorporating the proximal amino acids or cofactors. Here we report a metal–organic framework-based artificial enzyme (metal–organic–zyme, MOZ) by integrating active metal centres, proximal amino acids and other cofactors into a tunable metal–organic framework monolayer. We design two libraries of MOZs to perform photocatalytic CO2 reduction and water oxidation reactions. Through tuning the incorporated amino acids in the MOZs, we systematically optimize the activity and selectivity of these libraries. Combining these optimized MOZs into a single system realizes complete artificial photosynthesis in the reaction of (1 + n) CO2 + 2H2O → CH4 + nCO + (2 + n/2)O2. 
    more » « less